\qquad

Multiple Choice: Indicate your answer in the box to the right of each question.

1. If $a=0.5, b=\frac{1}{3}$, and $c=24$, find the value of $a^{4} b c^{2}-c a^{2}$
(a) -12
(b) -6
(c) 6
(d) 12
(e) 18
2.
3. $\tan A=\frac{20 \sqrt{17}}{17 \sqrt{20}}$. Which of these expressions is equal to $\sin A$?
(a) $\sqrt{\frac{20}{17}}$
(b) $\sqrt{\frac{20}{37}}$
(c) $\sqrt{\frac{17}{37}}$
(d) $\sqrt{\frac{17}{20}}$
(e) $\sqrt{\frac{3}{37}}$
4.
5. Consider all the numbers that can be expressed as sums of distinct powers of 3:
$1,3,4,9,10,12,13,27, \ldots$ What is the $20^{\text {th }}$ number in this increasing sequence?
(a) 90
(b) 91
(c) 93
(d) 94
(e) 99
6. The quadratic equations $y=a x^{2}+5 x+5$ and $y=a x^{2}-3 x-11$ have one root in common. What is it?
(a) a
(b) -5
(c) -2
(d) 5
(e) 9
7. If $\log _{2}\left(\log _{2}\left(\log _{2} x\right)\right)=2$, how many digits long is the decimal representation of x ?
(a) 4
(b) 5
(c) 6
(d) 15
(e) 16
8. What is the sum of the squares of the roots of $y=x^{2}+4 x-6$?
(a) -8
(b) -6
(c) -4
(d) 24
(e) 28
9. Compute $\sqrt{1+(49)(50)(51)(52)}$
(a) 50
(b) 51
(c) 2549
(d) 2551
(e) 2601
10. How many terms of the arithmetic sequence $75,122,169,216, \ldots$ are less than 2017 ?
(a) 41
(b) 42
(c) 43
(d) 44
(e) 45
11. Three circle chords of lengths 6,8 , and 10 form a triangle. Find the distance between the midpoints of the minor arcs determined by the two shorter chords.
(a) $5 \sqrt{2}$
(b) $4 \sqrt{5}$
(c) 5
(d) $5 \sqrt{6}$
(e) 10
\qquad

Short Answer: Write your answer and show your work in the space below each question.
Clearly indicate your final answer by drawing a box around it.
10. Simplify the expression: $\left(\frac{2 x}{6 x^{2}-5 x+1}\right)\left(\frac{2 x^{2}+5 x-3}{7 x^{2}+21 x}\right)$
11. Solve for $x:\left(\frac{1}{2}\right)^{x}=8^{2 x+7}$
12. What is the biggest multiple of 12 whose digits are all different?
13. Two circles of radii 1 and 4 are externally tangent. A line is drawn tangent to both circles (at different points). Compute the distance between the points of tangency of the line to the two circles.
\qquad
14. If 20^{n} is the largest power of 20 that is a factor of 2017!, compute n.
15. Triangle $A B C$ has sides 5,12 , and 13 , while triangle $A B D$ has sides 9,12 , and 15 . The two triangles overlap, so that $A B=12$ and C is on segment $\overline{A D}$. Find the distance from C to $\overline{B D}$.
16. You have 2017 identical looking coins. They are indistinguishable except for one counterfeit coin which is slightly heavier than the others. The weight difference is subtle enough that it takes a weighing on a scale to notice it. Unfortunately you only have a balance scale that can compare two equal stacks of coins and determine which is heavier (so if you weigh 100 fair coins vs 99 fair and 1 counterfeit coin, the side with the counterfeit will be heavier). You can guarantee to find the fake coin in at most X uses of the scale. Find X.
\qquad

Long Answer: Write your solution in the space below each question. Make sure you include sufficient justification.
17. The Stern-Brocot sequence can be formed as follows: Let $s_{1}=\{0,1\}$. We keep forming the next sequence by inserting between each neighbors the value of their sum. So $s_{2}=\{0,1,1\}, s_{3}=\{0,1,1,2,1\}$, etc.
a. Find s_{5}
b. State the formula for the number of terms in s_{n}
c. One of the terms of s_{n} is the Fibonacci number F_{n}. For example, s_{4} contains 3 and s_{5} contains 5 . Prove this.
d. The sum of the terms in s_{n} is $\frac{3^{n-1}+1}{2}$. Prove this result.
18. The chess knight is a piece that moves from a square to another square whose center is exactly $\sqrt{5}$ units away. For example, on the right, the white knight Na can move to the squares x , and the black knight Nb can move to the squares y .
If we only allow moves to empty squares show that no sequence of moves can turn the first of the below positions into the second.

